
9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 1/14

Tom MacWright
tom@macwright.org

More than you ever wanted to know about
GeoJSON
Let’s look at GeoJSON in a little more depth, from the ground up. Understanding these concepts will
help you understand geospatial data in general, too: the basic concepts behind GeoJSON have been
a part of geo since the very beginning.

This should be read along with the GeoJSON spec itself, which is authoritative and, for a formal
specification of a format, pretty readable.

Structure
Coordinate
Position

Geometry
Points
LineStrings
Polygons
Coordinate Deepness

Features
Multi Geometries
FeatureCollection

Topics
Winding
The 180th Meridian
What you can’t do with GeoJSON
Projections
Performance

Lossy compression
Loading subsets
Streaming

End notes

http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 2/14

Coordinate
The most basic element of geographic data is the coordinate. This is a single number representing a
single dimension: typically the dimensions are longitude and latitude. Sometimes there’s also a
coordinate for elevation. Time is a dimension but usually isn’t represented in a coordinate because it’s
too complex to fit in a number.

Coordinates in GeoJSON are formatted like numbers in JSON: in a simple decimal format. Unlike
geographic data for human consumption, data formats never use non-base-10 encodings like
sexagesimal. As cool as 8° 10’ 23” looks, it’s just not a very good way to tell numbers to computers.

Position
A position is an array of coordinates in order: this is the smallest unit that we can really consider ‘a
place’ since it can represent a point on earth. GeoJSON describes an order for coordinates: they
should go, in order:

[longitude, latitude, elevation]

This order can be surprising. Historically, the order of coordinates is usually “latitude, longitude”, and
many people will assume that this is the case universally. Long hours have been wasted discussing
which is better, but for this discussion, I’ll summarize as such:

longitude, latitude matches the X, Y order of math
data formats usually use longitude, latitude order
applications have tended to use latitude, longitude order

Here’s a handy chart of what uses which ordering.

Before the current specification was released, GeoJSON allowed the storage of more than 3
coordinates per position, and sometimes people would use that to store time, heart rate, and so on.
This wasn’t well supported in GeoJSON tools, and is forbidden by the new specification.

Geometry
Geometries are shapes. All simple geometries in GeoJSON consist of a type and a collection of
coordinates.

http://en.wikipedia.org/wiki/Sexagesimal
http://geojson.org/geojson-spec.html#positions
https://www.macwright.org/lonlat/
https://tools.ietf.org/html/rfc7946#section-3.1.1

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 3/14

Points

- Point
 - Position

With a single position, we can make the simplest geometry: the point.

{ "type": "Point", "coordinates": [0, 0] }

Depending on the type, the kind of collection of coordinates differs: let’s see how.

LineStrings

To represent a line, you’ll need at least two places to connect:

{ "type": "LineString", "coordinates": [[0, 0], [10, 10]] }

- LineString
 - Positions..

These are the two simplest, most carefree kinds of geometry. Points and LineStrings don’t have many
geometric rules: a point can lie anywhere in a place, and a line can contain arrangement of points,
even if it’s self-crossing. Points and lines are also similar in that they have no area: there is no inside
or outside.

Polygons

Polygons are where GeoJSON geometries become significantly more complex. They have area, so
they have insides & outsides. And not only do they have an inside, they can also have holes in that
inside.

{
 "type": "Polygon",
 "coordinates": [

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 4/14

 [
 [0, 0], [10, 10], [10, 0], [0, 0]
]
]
}

The list of coordinates for Polygons is nested one more level than that for LineStrings. For simple
polygons, this might seem like overkill: what is a polygon but a closed line? But holes explain the
jump in complexity: polygons in GeoJSON are not just closed areas, but can have cut-outs like
donuts.

- Polygon
 - LinearRing (exterior)
 - Positions..
 - LinearRing (interior)
 - Positions...
 - LinearRing (interior)
 - Positions...

For this reason, polygons introduce a new term: the LinearRing. LinearRings are loops of positions.

LinearRings are either the exterior ring - positions that form the outside edge of the Polygon and
define which parts are filled - or interior rings, which define the parts of the Polygon are empty. There

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 5/14

can only be one exterior ring, and it’s always the first one.

There can be any number of interior rings, including zero. Zero interior rings just means that the
polygon doesn’t have any holes.

You’ll also notice that the first coordinate is repeated at the end of each ring. There’s no particular
reason why this is necessary besides GeoJSON’s heritage in older formats.

Coordinate Deepness

In this fun exploration, you may have noticed that there are four ‘levels of depth’ for the coordinates
property of GeoJSON.

1. Points
2. MultiPoints & LineStrings
3. MultiLineStrings & Polygons
4. MultiPolygons

Features
Geometries are shapes and nothing more. They’re a central part of GeoJSON, but most data that has
something to do with the world isn’t simply a shape, but also has an identity and attributes. Some
polygons are the White House, other polygons are the border of Australia, and it’s important to know
which is which.

Features are this combination of geometry and properties.

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 6/14

{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [0, 0]
 },
 "properties": {
 "name": "null island"
 }
}

The properties attached to a feature can be any kind of JSON object. That said, given the fact that
no other prominent geospatial standard supports nested values, usually the properties object consists
of single-depth key⇢ value mappings.

Multi Geometries

Now that we’re talking about how data can describe the world, you might notice some limitations of
this approach. Each of the basic LineString, Polygon, Point types is great for representing a single
shape, but often the physical world contains entities that aren’t just a single contiguous thing. For
instance, the United States, along with many other countries, has multiple disconnected parts. We
refer to all of them as “The United States”, and software that wants to highlight “The United States”
should be able to know this and also highlight Alaska, Hawaii and the rest.

http://json.org/
http://en.wikipedia.org/wiki/List_of_transcontinental_countries

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 7/14

This is where Multi Geometries come in. GeoJSON has versions of each of the three basic types with
Multi stuck on the front: MultiPolygon, MultiLineString, MultiPoint. Together they give us
something of a solution for this problem.

The way Multi features are created is the same across all the types: everything moves down a step of
nesting. The coordinates of a single point are represented as [0, 0], so a MultiPoint of that and
another place might look like [[0, 0], [1, 1]].

In rarer cases, you’ll have a bunch of different kinds of geometries that all refer to the same thing. For
that, GeoJSON has the GeometryCollection type, which works like this:

{
 "type": "Feature",
 "geometry": {
 "type": "GeometryCollection",
 "geometries": [{
 "type": "Point",
 "coordinates": [0, 0]
 }, {
 "type": "LineString",
 "coordinates": [[0, 0], [1, 0]]
 }]
 },
 "properties": {
 "name": "null island"
 }
}

GeometryCollections are relatively rare: most of the time when you have geometries of different
types, you’ll also have properties that will specifically apply to the individually. The current GeoJSON
specification recommends against using GeometryCollections.

FeatureCollection
We’ve covered all the kinds of things that can be in GeoJSON but one: FeatureCollection is the
most common thing you’ll see at the top level of GeoJSON files in the field.

A FeatureCollection containing our “null island” example of a Feature looks like:

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 8/14

{
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [0, 0]
 },
 "properties": {
 "name": "null island"
 }
 }
]
}

FeatureCollection is not much more than an object that has "type": "FeatureCollection" and then
an array of Feature objects under the key "features". As the name suggests, the array needs to
contain Feature objects only - no raw geometries.

You might ask “why not just permit an array of GeoJSON objects”? FeatureCollections as objects
makes a lot of sense in terms of the commonality between different GeoJSON types.

GeoJSON objects are Objects, not Arrays or primitives
GeoJSON objects have a "type" property

This is really nifty for implementations: they don’t need to guess about what kind of GeoJSON object
they’re looking at - they just read the “type” property.

Winding
UPDATE: RFC 7946 GeoJSON now recommends right-hand rule winding order

LineString and Polygon geometries contain coordinates in an order: lines go in a certain direction,
and polygon rings do too.

The direction of LineString often reflects the direction of something in real life: a GPS trace will go in
the direction of movement, or a street in the direction of allowed traffic flows.

Polygon ring order is undefined in GeoJSON, but there’s a useful default to acquire: the right hand
rule. Specifically this means that

https://tools.ietf.org/html/rfc7946#section-3.1.6

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 9/14

The exterior ring should be counterclockwise.
Interior rings should be clockwise.

Why care? There are roughly two practical reasons:

1. The classic Chamberlain & Duquette algorithm for calculating the area of a polygon on a sphere
has the nice property that counterclockwise-wound polygons have positive area and clockwise
yield negative. If you ensure winding order, calculating the area of a polygon with holes is as
simple as adding the areas of all rings.

2. Winding order also has a default meaning in Canvas and other drawing APIs: drawing a path
with counterclockwise order within one with clockwise will cut it out of the filled image.

The 180th Meridian

The 180th meridian is one of the shames of geospatial technology. The story goes that given the rules
of

LineStrings and Polygons are represented as collections of positions
Positions should be within -180° and 180° longitude and -90° and 90° latitude

It is simply impossible to tell the difference between a line that goes from -179° around the world to
179°, or one that just hops over the 180th meridian. That’s one problem with Cartesian coordinates on
a sphere.

A popular way to represent these lines is to break the second rule: a line that crosses the 180th
meridian would be represented as 179° to 181° instead of 179° to -179°. By some definitions, this is
invalid: 181° is out of the range of the EPSG:4326 datum. But most modern map technology tolerates
this kind of data and helpfully draws the image you’d expect.

There’s a clear need for a cleverer and cleaner solution to the 180th meridian problem: both at zero
and at the dateline, even the most sophisticated tools exhibit eccentricities and bugs. The most

http://trs-new.jpl.nasa.gov/dspace/handle/2014/40409
http://jsfiddle.net/dg2caqsx/

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 10/14

promising option in my opinion is delta-encoding, like in TopoJSON and Geobuf. Instead of
representing coordinate pairs as in their full form, delta-encoded geodata will save a line as a series
of directional steps: starting from -73, 38, it would say to move by -3, -3, instead of specifying that
the next coordinate is -76, 35. Perhaps this gives a clear way to differentiate meridian wrapping from
world-sized jumps without breaking the rules of a datum. But that’s just a guess.

I wrote a whole article about the 180th meridian if you’d like to dig in even more.

What you can’t do with GeoJSON
Much of GeoJSON’s popularity derives from its simplicity, which makes it easy to implement, read,
and share. So, like every other format, it has its limits.

GeoJSON has no construct for topology, whether for compression, like TopoJSON, or
semantics, like OSM XML and some proprietary formats. A topological layer on top of GeoJSON
is possible but unimplemented.
GeoJSON features have properties, which are JSON. Properties can use any of the JSON
datatypes: numbers, strings, booleans, null, arrays, and objects. JSON doesn’t support every
data type: for instance, date values are supported by Shapefiles, but not in JSON.
GeoJSON doesn’t have a construct for styling features or specifying popup content like title &
description. There are folk conventions for this, like simplestyle-spec and Leaflet’s Path
properties, but these aren’t and won’t be part of the spec. Most geo formats don’t have styling
support included either - KML stands out as prioritizing styling.
GeoJSON doesn’t have a circle geometry type, or any kind of curve. Only a few formats, like
WKT, support curves and circles rather than straight-line geometries. Circles & curves are
relatively tricky to implement, because a circle on a spheroid geoid planet is much more
complex than a circle on a sheet of paper.
Positions don’t have attributes. If you have a LineString representation of a run, and your GPS
watch logged 1,000 different points along that run, along with your heart rate and the duration at
that time, there’s no clear answer for how to represent that data. You can store additional data
in positions as fourth and fifth coordinates, or in properties as an array with the same length as
the coordinate array, but neither option is well-supported by the ecosystem of tools. The Simple
Features Specification, which directly inspired GeoJSON and most GIS formats, doesn’t support
this notion of attributes-at-positions, and only two formats - GPX & OSM XML - do.

Projections

https://www.macwright.org/2016/09/26/the-180th-meridian.html
http://json.org/
https://github.com/mapbox/simplestyle-spec

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 11/14

UPDATE: 2008 geojson.org GeoJSON supported alternative coordinate reference systems other than
ESPG:4326, but this capability was removed in the current GeoJSON standard. So, this section is of
historical interest but you shouldn’t use the crs member or try to put projected data into GeoJSON:
you should instead reproject it to WGS84 first.

Anyway, here’s what it looked like:

{ "type": "Point",
 "coordinates": [100.0, 0.0],
 "crs": {
 "type": "link",
 "properties": {
 "href": "http://example.com/crs/42",
 "type": "proj4"
 } } }

However, tools that interact with GeoJSON often disregard this feature, and the IETF draft specifically
advises against using the crs property.

While there are other formats that support projections explicitly and have ecosystems with more focus
on alternative CRSes, there are a few important things to remember in terms of projections.

projections in data are variously referred to as SRS, CRS, and just ‘projections’ with pedantic and
poorly enumerated differences. consider the terms equivalent below

Map projections are not coordinate reference systems. You can rally against Web Mercator or
Plate Carée, but that’s entirely irrelevant to projections in data. Data can be stored in any projection
and displayed in any other projection by the magic of reprojection, done seamlessly by libraries like
proj4 that are integrated into virtually all tools. For instance, OpenStreetMap is typically displayed in
Web Mercator, but is stored in EPSG:4326. By the magic of reprojection, you can render
OpenStreetMap in any other projection.

Reprojection precision loss is real but tiny. If you’re a surveyor and used a theodolite to determine
a geographical position in centimeters relative to a landmark, and come up with a value in a state
plane coordinate system, it’s likely that you don’t want to - and shouldn’t - store your data in
EPSG:4326. That’s because computer calculations are typically fixed-point: instead of dividing 1 by 3
and getting ⅓ like you did in arithmetic, computers have a fixed number of decimal places - so most
calculations are just slightly off from the absolute value.

http://geojson.org/geojson-spec.html#coordinate-reference-system-objects
http://en.wikipedia.org/wiki/Spatial_reference_system
https://tools.ietf.org/html/rfc7946#section-4
http://en.wikipedia.org/wiki/Web_Mercator
http://en.wikipedia.org/wiki/Equirectangular_projection
https://trac.osgeo.org/proj/
http://www.openstreetmap.org/
http://en.wikipedia.org/wiki/Web_Mercator
http://spatialreference.org/ref/epsg/wgs-84/
http://en.wikipedia.org/wiki/State_Plane_Coordinate_System

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 12/14

Data projections are friction. If you aren’t a surveyor and don’t actually have centimeter-accuracy
data, using projections adds friction for users: instead of simply downloading and using data, they
need to determine the projection - sometimes manually - and occasionally even need to load in new
projection definitions in order to use it. And they usually, off the bat, just convert it to EPSG:4326.

So, the take-home lesson of data projections is that they’re useful for extremely-high precision
datasets. But such data is rare, and usually the GeoJSON default of EPSG:4326 is a better choice for
sharing and storing data.

Performance
I’ve heard it said that GeoJSON isn’t as efficient as binary formats like Shapefiles, or fancier-encoded
formats like TopoJSON, or that you should always use PostGIS. Performance of formats and internet
software is generally misunderstood and oversimplified. I don’t have enough space or knowledge to
cover all of it, but here are at least a few thoughts that might be enlightening.

Your first focus in terms of performance should always be bottlenecks. For instance, if you have a
classic GeoJSON + Leaflet setup and performance issues, the bottleneck is almost always network or
SVG. If it’s SVG performance - the cost of Leaflet drawing polygons and lines in your browser - then
the file format is irrelevant. Transfer the same data in an ultra-efficient format and you’ll still end up
with a slow map.

Let’s say that network time is the bottleneck: the GeoJSON file is 20MB and takes 20 seconds to
load. The approaches to solving that kind of issue are more general than any kind of file format:

Lossy compression

These tricks are employed by tools like simplify.js, TopoJSON, and Geobuf.

Removing attributes: often GeoJSON data (and data in general) contains columns that are
unused.
Quantization means reducing the precision of coordinates in your data to a certain level that
isn’t noticeable on the map.
Simplification will eliminate details that aren’t visible at reasonable zooms - removing
coordinates from LineStrings and Polygons that are super close together.

Lossy compression techniques are generally orthogonal to file formats: removing attributes and
simplifying geometries will give you some performance savings, regardless of whether the data’s a

http://leafletjs.com/
http://mourner.github.io/simplify-js/
https://github.com/mbostock/topojson
https://github.com/mapbox/geobuf

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 13/14

Shapefile, GeoJSON, or something else.

Loading subsets

Maps and analysis typically display or analyze a fraction of the total dataset at a time. By tiling or
implementing a protocol like WFS, you can specify smaller bites of data at a time, saving time.

The subsets approach generally implies some sort of lossy compression: if you don’t compromise
accuracy, zooming out on the map will load all of the data, yielding the same performance story you
started out with. So things like the Mapbox Vector Tile spec specifies not just how to cut up data, but
also how to simplify it.

File formats can support the trick of loading subsets by including indexes. Indexes like R* Trees and
cells make it possible to efficiently query a file for a specific geographical area, rather than having to
look at each feature in succession. While it’s possible to index GeoJSON, there are no popular
implementations, and their usefulness would be limited to Content-Range support in web servers,
which is quite limited.

Streaming

Running an analysis across a gigantic dataset, like the 550GB+ OpenStreetMap Planet which you
don’t want load into memory, requires streaming. In a nutshell, streaming is a technique in which
software will read datasets item-by-item, only keeping a tiny fraction of it in memory at a time.

Some formats are very amenable to streaming, like CSV, which you only need to split by newlines to
process in this fashion. XML, awkward as it is, is also gifted with a number of high-quality streaming
parsers that make streaming parsing of OSM XML doable.

While it’s somewhat possible to parse GeoJSON with streams, it has a few drawbacks relative to
some other formats:

The order of properties in GeoJSON isn’t defined: the “properties” part of a feature could come
before or after the “id” and so on with every other part.
JSON requires a single root object: you can’t just “write a bunch of GeoJSON Features to a file”
and be done with it: they would need to be wrapped in an array, in a FeatureCollection.

In other words, streaming benefits from simple separators between entries in data and well-defined
types and orders. GeoJSON isn’t perfect in this regard, due to its JSON lineage, but there’s plenty of
room to improve by taking advantage of the LD-JSON spec that proposes line-delimited JSON.

http://en.wikipedia.org/wiki/Web_Feature_Service
https://github.com/mapbox/vector-tile-spec/
http://en.wikipedia.org/wiki/R*_tree
https://github.com/mapbox/tile-cover
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://planet.osm.org/
http://wiki.openstreetmap.org/wiki/OSM_XML
https://en.wikipedia.org/wiki/Line_Delimited_JSON

9/21/2017 More than you ever wanted to know about GeoJSON - macwright.org

https://macwright.org/2015/03/23/geojson-second-bite.html 14/14

End notes
If you’re diving into the technology around GeoJSON, I’ve compiled a list of utilities that convert,
process, and analyze GeoJSON data. To tinker with GeoJSON and see how it relates to geographical
features, try geojson.io, a tool that shows code and visual representation in two panes.

March 23, 2015 @tmcw

More things I've written about GeoJSON:
- Everything you need to know now about RFC 7946 GeoJSON
- Falsehoods developers believe about GeoJSON

https://github.com/tmcw/awesome-geojson
https://macwright.org/2013/07/26/geojsonio.html
https://twitter.com/intent/follow?screen_name=tmcw&user_id=1458271
https://macwright.org/2016/11/07/the-geojson-ietf-standard.html
https://macwright.org/2016/06/05/falsehoods-developers-believe-about-geojson.html

