
Front-End Coding:
HTML and CSS

Bo Zhao
The Department of Geography

Geography: 328
University of Washington

WebGIS
Module Three

Outline

HTML

• Element
• Attribute
• Anatomy of an HTML document
• Debugging
• Active Learning: Html document structure

What is HTML?
HTML (Hypertext Markup Language) is not a programming language. It is a markup language
that tells web browsers how to structure the web pages you visit. It can be as complicated or
as simple as the web developer wants it to be.

HTML consists of a series of elements, which you use to enclose, wrap, or mark up different
parts of content to make it appear or act in a certain way. The enclosing tags can make
content into a hyperlink to connect to another page, italicize words, and so on.

Nesting elements

Elements can be placed within other
elements. This is called nesting. If we
wanted to state that our cat is very
grumpy, we could wrap the word very in a
 element, which means that the
word is to have strong(er) text formatting:

<p>My cat is very grumpy.</p>

<p>My cat is very grumpy.</p>

Block v.s. inline elements

Two important categories of elements to know in HTML:
block-level elements and inline elements.
• Block-level elements form a visible block on a page. A block-level element appears on a

new line following the content that precedes it. Any content that follows a block-level
element also appears on a new line. Block-level elements are usually structural elements
on the page. For example, a block-level element might represent headings, paragraphs,
lists, navigation menus, or footers. A block-level element wouldn't be nested inside an
inline element, but it might be nested inside another block-level element.

• Inline elements are contained within block-level elements and surround only small parts
of the document’s content (not entire paragraphs or groupings of content). An inline
element will not cause a new line to appear in the document. It is typically used with text,
for example an <a> element creates a hyperlink, and elements such as or
create emphasis.

Empty elements

• Not all elements follow the pattern of an opening
tag, content, and a closing tag.

• Some elements consist of a single tag, which is
typically used to insert/embed something in the
document. For example, the element
embeds an image file onto a page:

Attribute

Attributes contain extra information about the element that won't appear in
the content. In this example, the class attribute is an identifying name used to
target the element with style information.

An attribute should have:
• A space between it and the element name. (For an element with more than one

attribute, the attributes should be separated by spaces too.)

• The attribute name, followed by an equal sign.

• An attribute value, wrapped with opening and closing quote marks.

Single or double quotes?
In this article you will also notice that the attributes are wrapped in
double quotes. However, you might see single quotes in some
HTML code. This is a matter of style. You can feel free to choose
which one you prefer. Both of these lines are equivalent:

if you use one type of quote, you can include the other type of quote
inside your attribute values:

A link to my example.

 A link to my example.

 A link to my example.

Single or double quotes?

To use quote marks inside other quote marks of the
same type (single quote or double quote), use HTML
entities. For example, this will break:

Instead, you need to do this:

A

link to my example.

<a href='https://www.example.com' title='Isn't this

fun?'>A link to my example.

Anatomy of an HTML document
<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title>My test page</title>

 </head>

 <body>

 <p>This is my page</p>

 </body>

</html>

• <!DOCTYPE html>: The doctype. When HTML was
young (1991-1992), doctypes were meant to act as
links to a set of rules that the HTML page had to follow
to be considered good HTML. More recently, the
doctype is a historical artifact that needs to be included
for everything else to work right. <!DOCTYPE html> is
the shortest string of characters that counts as a valid
doctype.

• <html></html>: The <html> element. This element
wraps all the content on the page. It is sometimes
known as the root element.

• <head></head>: The <head> element. This element
acts as a container for everything you want to include
on the HTML page, that isn't the content the page will
show to viewers. This includes keywords and a page
description that would appear in search results, CSS to
style content, character set declarations, and more.
You'll learn more about this in the next article of the
series.

Anatomy of an HTML document
<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title>My test page</title>

 </head>

 <body>

 <p>This is my page</p>

 </body>

</html>

• <meta charset="utf-8">: This element specifies the
character set for your document to UTF-8, which
includes most characters from the vast majority of
human written languages. With this setting, the page
can now handle any textual content it might contain.
There is no reason not to set this, and it can help avoid
some problems later.

• <title></title>: The <title> element. This sets the title of
the page, which is the title that appears in the browser
tab the page is loaded in. The page title is also used to
describe the page when it is bookmarked.

• <body></body>: The <body> element. This contains all
the content that displays on the page, including text,
images, videos, games, playable audio tracks, or
whatever else.

Whitespace in HTML
In the example shown below, you may have noticed that a lot of whitespace is
included in the code. This is optional. These two code snippets are equivalent:

No matter how much whitespace you use inside HTML element content (which
can include one or more space character, but also line breaks), the HTML parser
reduces each sequence of whitespace to a single space when rendering the code.
So why use so much whitespace? The answer is readability.

<p>This is an example.</p>

 <p>This is an

 example.</p>

Including special characters in HTML

• In HTML, the characters <, >,",' and & are special characters. They are parts of the HTML syntax
itself. So how do you include one of these special characters in your text? For example, if you
want to use an ampersand or less-than sign, and not have it interpreted as code.

• You do this with character references. These are special codes that represent characters, to be
used in these exact circumstances. Each character reference starts with an ampersand (&) and
ends with a semicolon (;).

• The character reference equivalent could be easily remembered because the text it uses can be
seen as less than for '<' , quotation for ' " ' and similarly for others.

• List of XML and HTML character entity references.

<p>In HTML, you define a paragraph using the <p> element.</p>

<p>In HTML, you define a paragraph using the <p> element.</p>

https://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references

HTML Comments
HTML has a mechanism to write comments in the code. Browsers ignore comments,
effectively making comments invisible to the user. The purpose of comments is to allow you
to include notes in the code to explain your logic or coding. This is very useful if you return to
a code base after being away for long enough that you don't completely remember it.
Likewise, comments are invaluable as different people are making changes and updates.

To write an HTML comment, wrap it in the special markers <!-- and -->. For example:

<p>I'm not inside a comment</p>

<!-- <p> I am ! </p> -->

The head in HTML
The head of an HTML document is the part that is not displayed in the web
browser when the page is loaded.

It contains information such as the page <title>, links to CSS (if you choose to style
your HTML content with CSS), links to custom favicons, and other metadata (data
about the HTML, such as the author, and important keywords that describe the
document

• Adding a title: the title tag

• Metadata: the <meta> element, charset, user, description, keyword, etc.

• Adding custom icons to your site: favicon

• Applying CSS and JavaScript to HTML: link and script in the head element

• Setting the primary language of the document: <html lang="en-US">

Custom icons to your html page

• To further enrich your site design, you can add references to custom icons in your
metadata, and these will be displayed in certain contexts. The most commonly used of
these is the favicon (short for "favorites icon", referring to its use in the "favorites" or
"bookmarks" lists in browsers).

• The humble favicon has been around for many years. It is the first icon of this type: a 16-
pixel square icon used in multiple places. You may see (depending on the browser)
favicons displayed in the browser tab containing each open page, and next to bookmarked
pages in the bookmarks panel.

• Try out this online favicon creator at https://favicon.io/

<link rel="icon" href="favicon.ico" type="image/x-icon">

https://favicon.io/

Custom icons to your html page

<!-- third-generation iPad with high-resolution Retina display: -->

<link rel="apple-touch-icon-precomposed" sizes="144x144"

href="https://developer.mozilla.org/static/img/favicon144.png">

<!-- iPhone with high-resolution Retina display: -->

<link rel="apple-touch-icon-precomposed" sizes="114x114"

href="https://developer.mozilla.org/static/img/favicon114.png">

<!-- first- and second-generation iPad: -->

<link rel="apple-touch-icon-precomposed" sizes="72x72"

href="https://developer.mozilla.org/static/img/favicon72.png">

<!-- non-Retina iPhone, iPod Touch, and Android 2.1+ devices: -->

<link rel="apple-touch-icon-precomposed"

href="https://developer.mozilla.org/static/img/favicon57.png">

<!-- basic favicon --> <link rel="icon"

href="https://developer.mozilla.org/static/img/favicon32.png">

The comments explain what each
icon is used for — these elements
cover things like providing a nice
high-resolution icon to use when
the website is saved to an iPad's
home screen.

Don't worry too much about
implementing all these types of
icon right now — this is a fairly
advanced feature, and you won't
be expected to have knowledge of
this to progress through the
course. The main purpose here is
to let you know what such things
are, in case you come across them
while browsing other websites'
source code.

Debugging HTML
• From the Chrome menu: Open the Chrome menu and go to “More Tools” >

“Developer Tools.” Finally, you can right-click (Windows) or Ctrl-click (Mac)
anything on a web page and select “Inspect Element” to open Developer Tools.
The Developer Tools panel will open in whatever web page you're on.

• An overview to Google Chrome DevTools

https://developer.chrome.com/docs/devtools/overview/

Document and website structure
Webpages can and will look different from one another, but they all tend to share similar
standard components, unless the page is displaying a Fullscreen video or game, is part of
some kind of art project, or is just badly structured:

• header: Usually a big strip across the top with a big heading, logo, and perhaps a tagline. This usually stays the same
from one webpage to another.

• navigation bar: Links to the site's main sections; usually represented by menu buttons, links, or tabs. Like the header,
this content usually remains consistent from one webpage to another — having inconsistent navigation on your website
will just lead to confused, frustrated users. Many web designers consider the navigation bar to be part of the header
rather than an individual component, but that's not a requirement; in fact, some also argue that having the two separate
is better for accessibility, as screen readers can read the two features better if they are separate.

• main content: A big area in the center that contains most of the unique content of a given webpage, for example, the
video you want to watch, or the main story you're reading, or the map you want to view, or the news headlines, etc. This
is the one part of the website that definitely will vary from page to page!

• sidebar: Some peripheral info, links, quotes, ads, etc. Usually, this is contextual to what is contained in the main content
(for example on a news article page, the sidebar might contain the author's bio, or links to related articles) but there are
also cases where you'll find some recurring elements like a secondary navigation system.

• footer: A strip across the bottom of the page that generally contains fine print, copyright notices, or contact info. It's a
place to put common information (like the header) but usually, that information is not critical or secondary to the
website itself. The footer is also sometimes used for SEO purposes, by providing links for quick access to popular content.

Document and website structure

HTML for structuring content

To implement such semantic mark up, HTML provides dedicated tags that
you can use to represent such sections, for example:

• header: <header>.
• navigation bar: <nav>.

• main content: <main>, with various content subsections represented by
<article>, <section>, and <div> elements.

• sidebar: <aside>; often placed inside <main>.
• footer: <footer>.

https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Document_and_website_structure#html_layout_elements_in_more_detail

CSS - Cascading Style Sheets

CSS (Cascading Style Sheets) is used to style and lay out web pages — for example,
to alter the font, color, size, and spacing of your content, split it into multiple
columns, or add animations and other decorative features. This module provides a
gentle beginning to your path towards CSS mastery with the basics of how it
works, what the syntax looks like, and how you can start using it to add styling to
HTML.

Outline

• CSS Syntax
• CSS Specifications
• The work process
• Integrate CSS to HTML
• Selectors
• CSS Layout
• Active Learning: CSS Debugging

CSS syntax
CSS is a rule-based language — you define rules specifying groups of styles that should be
applied to particular elements or groups of elements on your web page. For example "I want the
main heading on my page to be shown as large red text."

h1 {
 color: red;
 font-size: 5em;
}

The rule opens with a selector . This selects the HTML element that we are going to style. In this case we
are styling level one headings (<h1>).

We then have a set of curly braces { }. Inside those will be one or more declarations, which take the form
of property and value pairs. Each pair specifies a property of the element(s) we are selecting, then a
value that we'd like to give the property.

Before the colon, we have the property, and after the colon, the value. CSS properties have different
allowable values, depending on which property is being specified. In our example, we have the color
property, which can take various color values. We also have the font-size property. This property can take
various size units as a value.

CSS Specifications

• All web standards technologies (HTML, CSS, JavaScript,
etc.) are defined in giant documents called specifications (or
"specs"), which are published by standards organizations
(such as the W3C, WHATWG, ECMA, or Khronos) and
define precisely how those technologies are supposed to
behave.

• CSS is no different — it is developed by a group within the W3C
called the CSS Working Group. This group is made of
representatives of browser vendors and other companies who
have an interest in CSS. There are also other people, known as
invited experts, who act as independent voices; they are not
linked to a member organization.

https://developer.mozilla.org/en-US/docs/Glossary/W3C
https://developer.mozilla.org/en-US/docs/Glossary/WHATWG
https://developer.mozilla.org/en-US/docs/Glossary/ECMA
https://developer.mozilla.org/en-US/docs/Glossary/Khronos

How does CSS actually work?

• When a browser displays a document, it must
combine the document's content with its style
information. It processes the document in a
number of stages, which we've listed below.

• Bear in mind that this is a very simplified
version of what happens when a browser loads
a webpage, and that different browsers will
handle the process in different ways. But this is
roughly what happens.

The working process

1. The browser loads the HTML (e.g., receives it from the network).

2. It converts the HTML into a DOM (Document Object Model). The DOM represents the
document in the computer's memory. The DOM is explained in a bit more detail in the next
section.

3. The browser then fetches most of the resources that are linked to by the HTML document,
such as embedded images and videos ... and linked CSS! JavaScript is handled a bit later on in
the process, and we won't talk about it here to keep things simpler.

4. The browser parses the fetched CSS and sorts the different rules by their selector types into
different "buckets", e.g., element, class, ID, and so on. Based on the selectors it finds, it
works out which rules should be applied to which nodes in the DOM and attaches style to
them as required (this intermediate step is called a render tree).

5. The render tree is laid out in the structure it should appear in after the rules have been
applied to it.

6. The visual display of the page is shown on the screen (this stage is called painting).

The working process

The following diagram also offers a simple view
of the process.

What happens if a browser encounters
CSS it doesn't understand?

• Given that CSS is being developed all the time, and is
therefore ahead of what browsers can recognize, you might
wonder what happens if a browser encounters a CSS
selector or declaration it doesn't recognize.

• The answer is that it does nothing, and just moves on to the
next bit of CSS.

• If a browser is parsing your rules and encounters a property
or value that it doesn't understand, it ignores it and moves
on to the next declaration. It will do this if you have made an
error and misspelled a property or value, or if the property or
value is just too new and the browser doesn't yet support it.

Applying CSS to HTML

The very first thing we need to do is to tell the HTML document that we have some CSS rules we
want it to use. There are three different ways to apply CSS to an HTML document that you'll
commonly come across, however, for now, we will look at the most usual and useful way of doing
so — linking CSS from the head of your document.

Create a file in the same folder as your HTML document and save it as styles.css. The .css extension
shows that this is a CSS file.

To link styles.css to index.html add the following line somewhere inside the <head> of the HTML
document:

<link rel="stylesheet" href="styles.css">

Applying CSS to HTML:
External Stylesheet
An external stylesheet contains CSS in a separate file with a .css extension. This is the most
common and useful method of bringing CSS to a document. You can link a single CSS file to
multiple web pages, styling all of them with the same CSS stylesheet. In the Getting started
with CSS, we linked an external stylesheet to our web page.

Applying CSS to HTML:
Internal Stylesheet
An internal stylesheet resides within an HTML document. To create an internal stylesheet,
you place CSS inside a <style> element contained inside the HTML <head>.

Applying CSS to HTML:
Inline Style
Inline styles
Inline styles are CSS declarations that affect a single HTML element, contained within a style
attribute. The implementation of an inline style in an HTML document might look like this:

Avoid using CSS in this way, when possible. It is the opposite of a best practice.

Selectors
By making our heading red we have already demonstrated that we
can target and style an HTML element. We do this by targeting an
element selector — this is a selector that directly matches an HTML
element name. To target all paragraphs in the document you would
use the selector p. To turn all paragraphs green you would use:

You can target multiple selectors at once, by separating the
selectors with a comma. If I want all paragraphs and all list
items to be green my rule looks like this:

p {

 color: green;

 }

p, li {

 color: green;

 }

Selectors: Changing the default style

We can see how the browser is making the HTML readable by adding some default styling. Headings are
large and bold and our list has bullets. This happens because browsers have internal stylesheets containing
default styles, which they apply to all pages by default; without them all of the text would run together in
a clump and we would have to style everything from scratch. All modern browsers display HTML content
by default in pretty much the same way.

However, you will often want something other than the choice the browser has made. This can be done by
choosing the HTML element that you want to change, and using a CSS rule to change the way it looks. A
good example is our , an unordered list. It has list bullets, and if I decide I don't want those bullets I
can remove them like so:

li {

 list-style-type: none;

 }

Selectors using class
So far we have styled elements based on their HTML element names. This works as long as
you want all of the elements of that type in your document to look the same. Most of the
time that isn't the case and so you will need to find a way to select a subset of the elements
without changing the others. The most common way to do this is to add a class to your HTML
element and target that class.

In your HTML document, add a class attribute to the second list item. Your list will now look
like this:

In your CSS you can target the class of special by creating a selector that starts with a full stop
character. Add the following to your CSS file:

 Item one
 <li class="special">Item two
 Item three

.special {

 color: orange;

 font-weight: bold;

}

Selector based on rules

Sometimes you will see rules with a selector that lists the HTML element
selector along with the class:

This syntax means "target any li element that has a class of special". If you were to
do this then you would no longer be able to apply the class to a or another
element by adding the class to it; you would have to add that element to the list of
selectors:

li.special {

 color: orange;

 font-weight: bold;

}

li.special,

span.special {

 color: orange;

 font-weight: bold;

}

Selector based on locations

To select only an that is nested inside an element I can use a
selector called the descendant combinator, which takes the form of a
space between two other selectors.

Something else you might like to try is styling a paragraph when it comes directly
after a heading at the same hierarchy level in the HTML. To do so place a + (an
adjacent sibling combinator) between the selectors.

li em {

 color: rebeccapurple;

}

h1 + p {

 font-weight: bold;

 color: orange;}

Selector based on states

• When we style a link we need to target the <a> (anchor) element. This
has different states depending on whether it is unvisited, visited, being
hovered over, focused via the keyboard, or in the process of being clicked
(activated).

• You can use CSS to target these different states — the CSS below styles
unvisited links pink and visited links green.

• You can change the way the link looks when the user hovers over it, for
example by removing the underline, which is achieved by the next rule:

a:link { color: pink; }

 a:visited { color: green; }

 a:hover { text-decoration: none; }

More selectors
Selector Example Learn CSS tutorial

Type selector h1 { } Type selectors

Universal selector * { } The universal selector

Class selector .box { } Class selectors

id selector #unique { } ID selectors

Attribute selector a[title] { } Attribute selectors

Pseudo-class selectors p:first-child { } Pseudo-classes

Pseudo-element selectors p::first-line { } Pseudo-elements

Descendant combinator article p Descendant combinator

Child combinator article > p Child combinator

Adjacent sibling combinator h1 + p Adjacent sibling

General sibling combinator h1 ~ p General sibling

https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors

https://developer.mozilla.org/en-US/docs/Web/CSS/Type_selectors
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors/Type_Class_and_ID_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/Universal_selectors
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors/Type_Class_and_ID_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/Class_selectors
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors/Type_Class_and_ID_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/ID_selectors
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors/Type_Class_and_ID_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/Attribute_selectors
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors/Attribute_selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors/Pseudo-classes_and_pseudo-elements
https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-elements
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors/Pseudo-classes_and_pseudo-elements
https://developer.mozilla.org/en-US/docs/Web/CSS/Descendant_combinator
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors/Combinators
https://developer.mozilla.org/en-US/docs/Web/CSS/Child_combinator
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors/Combinators
https://developer.mozilla.org/en-US/docs/Web/CSS/Adjacent_sibling_combinator
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors/Combinators
https://developer.mozilla.org/en-US/docs/Web/CSS/General_sibling_combinator
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors/Combinators

CSS layout

CSS page layout techniques allow us to take elements contained in a web page and control
where they're positioned relative to the following factors: their default position in normal
layout flow, the other elements around them, their parent container, and the main
viewport/window.

• Normal flow: HTML is displayed in the exact order in which it appears in the source code, with elements stacked on top
of one another

• The display property: Standard values such as block, inline or inline-block can change how elements behave in normal
flow, for example, by making a block-level element behave like an inline-level element (see Types of CSS boxes for more
information). We also have entire layout methods that are enabled via specific display values, for example, CSS Grid and
Flexbox, which alter how child elements are laid out inside their parents.

• Floats: Applying a float value such as left can cause block-level elements to wrap along one side of an element, like the
way images sometimes have text floating around them in magazine layouts.

• The position property: Allows you to precisely control the placement of boxes inside other boxes. static positioning is
the default in normal flow, but you can cause elements to be laid out differently using other values, for example, as fixed
to the top of the browser viewport.

Active Learning
CSS Debugging

